Loading...
机构名称:
¥ 3.0

层论的语境定义对我们理解语境起到了重要作用,因为它为直观的语境概念提供了精确的数学结构。层论框架最早由 Abramsky 和 ​​Brandenburger [11, 13] 提出,他们在测量场景中定义了事件和分布,并确定了这些概念的层结构。在这里,我们可以将全局分布与隐变量模型联系起来,该模型因无法解释量子理论的独特特征而闻名。Abramsky、Barbosa 和 Mansfield [16] 进一步探讨了语境的一种度量。这项工作开辟了在给定量子场景中量化语境的方法。随后同调方法对语境的研究也为在给定测量场景中观察语境提供了重要的方法。 Abramsky、Mansfield 和 Barbosa [12] 提出了基于ˇ Cech 上同调不变量的方法,该方法利用层上同调的强大工具来检测经验模型中的语境性。Okay、Roberts、Bartlett 和 Raussendorf [21] 的提议建立了识别语境性的拓扑方法,该方法有可能提供更精细的分析,尽管必须考虑额外的拓扑结构。Aasnæss [18] 将这些方法联系起来,通过将论据从一种转化为另一种,补充了每种方法的通用性和完整性。另一方面,同一研究小组还描述了一种更强形式的语境性,即全有与全无 (AvN) 论据。Abramsky 等人 [14, 15] 参考 Mermin [9, 10] 的观察,将量子信息系统中的逻辑不一致性形式化为 AvN 论证。在 Aasnæss [18] 的著作中,这种语境性也被看作是上同调群的一个障碍。虽然层论框架为 MBQC 和浅层电路的量子优势提供了论证基础,但应用的最后一个案例,即参考文献 23 和 24,可以追溯到 Kochen 和 Specker 关于形式化语境性的框架,即所谓的封闭子理论中的语境性。这个概念似乎用

arXiv:2311.11218v1 [quant-ph] 2023 年 11 月 19 日

arXiv:2311.11218v1 [quant-ph] 2023 年 11 月 19 日PDF文件第1页

arXiv:2311.11218v1 [quant-ph] 2023 年 11 月 19 日PDF文件第2页

arXiv:2311.11218v1 [quant-ph] 2023 年 11 月 19 日PDF文件第3页

arXiv:2311.11218v1 [quant-ph] 2023 年 11 月 19 日PDF文件第4页

arXiv:2311.11218v1 [quant-ph] 2023 年 11 月 19 日PDF文件第5页

相关文件推荐